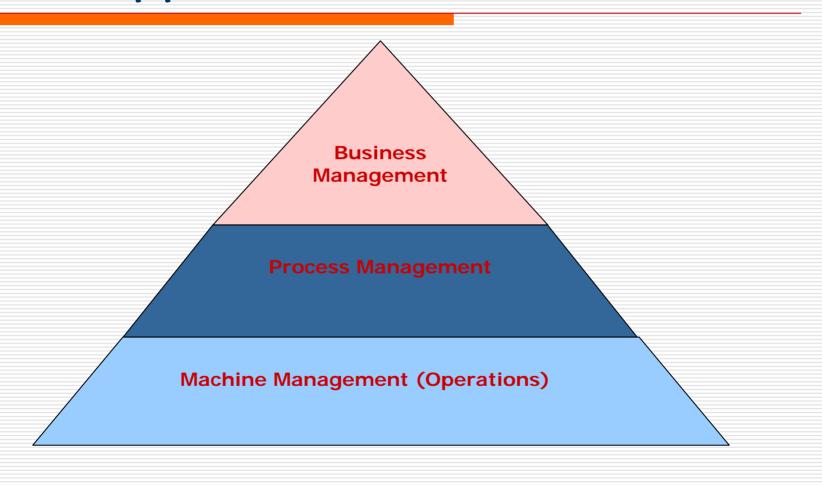
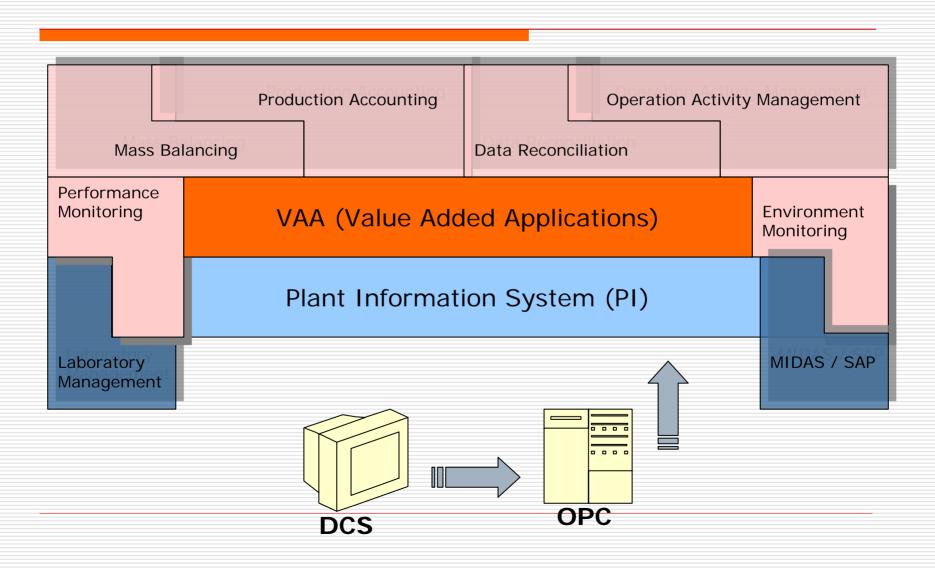
Engro Innovative Automation


Leveraging IT in Process and Production Industries

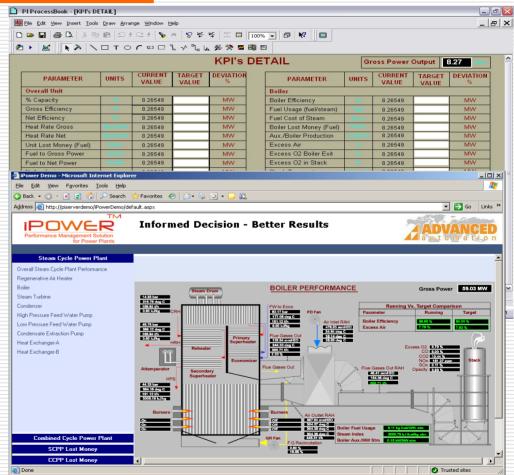
By:
Arif Shuja
Manager, High End Solutions


IT in Industries

- Agenda
 - Convert raw data into useful information
 - Leveraging IT in
 - Process Industry
 - Production Industry
- Sectors and Solutions
 - Power iPowerTM
 - Fertilizer iFertilizerTM
 - Oil and Gas Reporting, PI-Hysys Integration
 - Utilities iboilerTM, iwaterTM

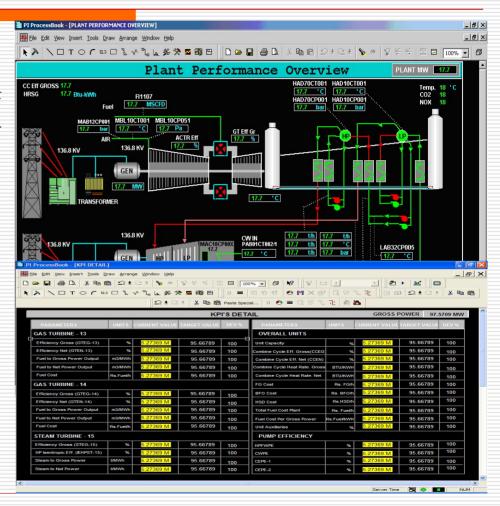
PIMS Application Structure

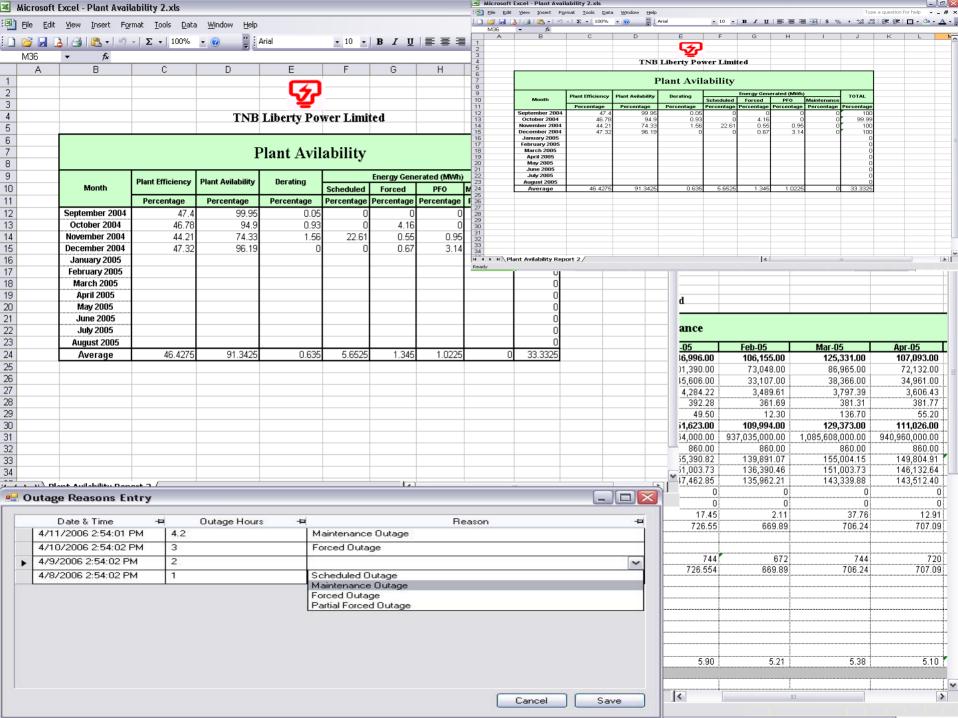
PIMS Detail Structure

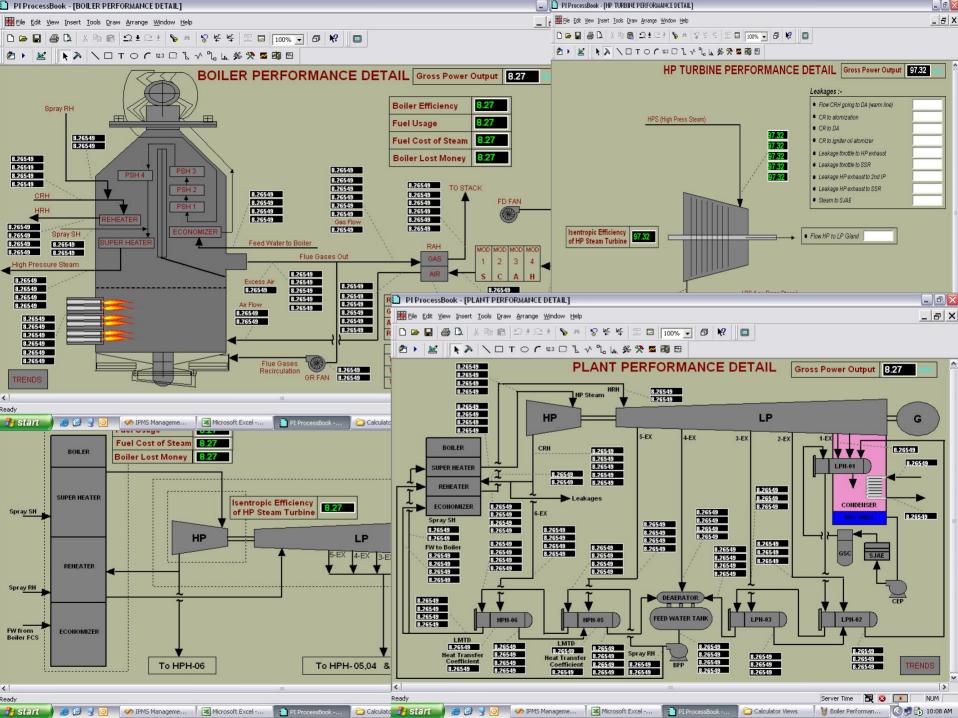


Engro Innovative Automation Production Accounting **Environmental Monitoring** Production Quality Monitoring Plant Safety Monitoring **KPI Tabulation** Daily Production Profits Financial Reports Cost Impact due to Plant Efficiency **Business Management Applications** Planned Vs Actual Profits due to Plant Efficiency **Urea Production** Reports Product Quality Plant Performance Reports Site Gas Index Subtopic Documentation Management Ammonia (22) DCS Schematic Data Viewing Urea (17) Urea Utility (15) Ammonia Production Urea Production Total Gas / Met Urea Process Gas / Met Urea **KPI Tabulation** Reforming Gas / Met Urea KGT Gas / Met Urea GT's Gas / Met Urea Boiler Gas / Met Urea **Urea Plant Indexes** Online Data Trending **Urea Plant Solution Urea Plant Reports** Catacarb Report Ammonia Plant Reports Reports Catalyst Report Process Management Applications Steam Balance Report Utility Reports Steam Balance Power Balance Mass Balances **Details of Applications** Gas Balance Data Reconciliation (Heat & Material Balance) **Environmental Monitoring** Production Accounting Alarm Management LIMS Safety Incident Logging Equipment Data Sheets Design Procedure P & IDs **Documentation Management** PFDs Reports Alarm Management Operator Shift Logging Operator Task Management Operator Shift Management Operational Management Applications Safety Incident Logging Documentation Management

Reports

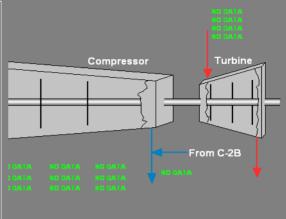

Power - iPowerTM


- Required for production reporting, process analysis, optimization & efficient decision making.
- Performance engineering calculations for power plant and its equipments.
- Helps in load management for turbines, pumps etc operating in parallel in a circuit.
- Man-hour saving which is currently being wasted in analysis & data searching.
- Compare running vs. design data & running vs. target data.
- Cost & Lost Money Analysis which is of the interest of business people to know the cash in & out flows.
- Giving power to improve business strategy by timely decision making.
- PMS enable individuals within organizations to leverage the information stored in their control systems.
- Improve reliability & decrease downtime.



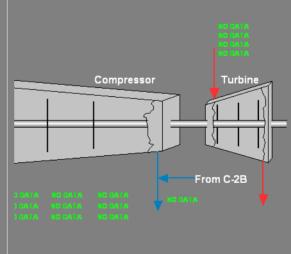
Power – iPowerTM contd.

- Better understanding on the plant data/information to grow with multiple competitors.
- Reporting feature adds value to solution; client can send, edit and print reports automatically.
- The access to data, its transformation into rolebased information and delivery through webapplications are the core set of functionalities.
- Historizing the data helps in getting previously recorded values so as to easy backtrack when required.
- Property packages are available and incorporated in iPowerTM that performs calculations of physical properties of material streams like air, water, steam, hydrocarbons (h/c), different gases and mixtures.
- There is no change in existing process, it just take the data of the running plant and performs useful analysis.
- No shutdowns are required for iPower connectivity.
- All the critical and performance information is distributed on business, process & operations layers according to their areas if interests.
- Boost production, better forecasting & high revenues.

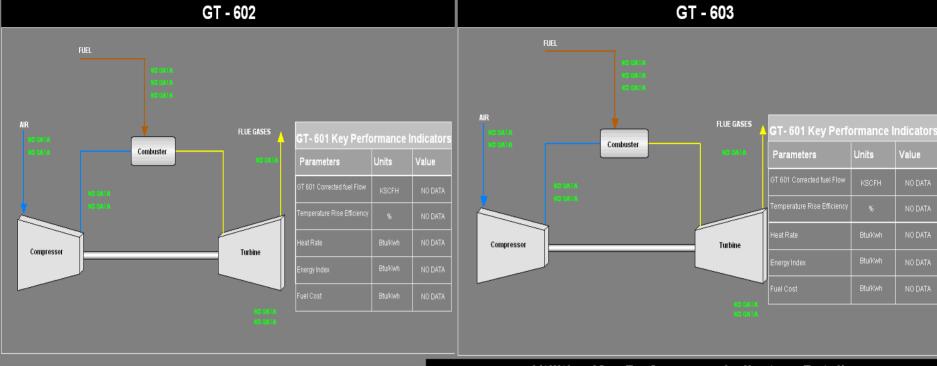

Urea 1 Key Performance Indicators Detail

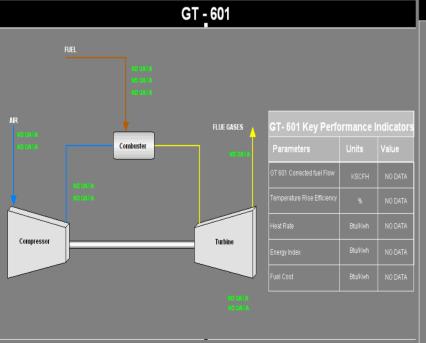
Parameters	Units	Value	
COZ	4		
Specific Speed	RPM/KPPH	NO DATA	
1st Stage Comp Ratio		NO DATA	
2nd Stage Comp Ratio		NO DATA	
3rd Stage Comp Ratio		NO DATA	
4th Stage Comp Ratio		NO DATA	
5th Stage Comp Ratio		NO DATA	
1st Stage Cooler Approach:	Deg F	NO DATA	
2nd Stage Cooler Approach:	Deg F	NO DATA	
3rd Stage Cooler Approach:	Deg F	NO DATA	
4th Stage Cooler Approach:	Deg F	NO DATA	
(02 Compressor		
Corrected Flow	KSCFH	NO DATA	
CO2 to Urea(Melt flow based ratio)	MTPD/KSCFH	NO DATA	
Key Performance Indicators			
Amm / CO2 Flow:	GPM/KSCFH	NO DATA	
Carbamate flow	GPM	NO DATA	
Carbamate flow / CO2 Flow:	GPM/KSCFH	NO DATA	

Parameters	Units	Value		
CO2 Compressor C.2B				
Specific Speed	RPMKPPH	NO DATA		
1st Stage Comp Ratio		NO DATA		
2nd Stage Comp Ratio		NO DATA		
3rd Stage Comp Ratio		NO DATA		
4th Stage Comp Ratio		NO DATA		
5th Stage Comp Ratio		NO DATA		
1st Stage Cooler Approach:	Deg F	NO DATA		
2nd Stage Cooler Approach:	Deg F	NO DATA		
3rd Stage Cooler Approach:	Deg F	NO DATA		
4th Stage Cooler Approach:	Deg F	NO DATA		
Urea Production				
D-141 O/L Soin Conc	%	NO DATA		
D-141 O/L Soln Sp. Gravity		NO DATA		
Corr. Factor Urea Melt Flow		NO DATA		
Melt Flow	GPM	NO DATA		
UR1 Prod. Melt Flow Based	MTPH	NO DATA		
Urea Prod. NH3 Flow Based	MTPD	NO DATA		


Parameters	Units	Value			
NH3	NH3 Exchangers				
E-164A Approach	Deg F	NO DATA			
E-164B Approach	Deg F	NO DATA			
E-164C Approach	Deg F	NO DATA			
E-164D Approach	Deg F	NO DATA			

C - 2A


Key Performanc	e Indica	itors
Parameter	Units	Value
Specific Speed	RPM/KPPH	NO DATA
1st Stage Comp Radio		NO DATA
2nd Stage Comp Radio		NO DATA
3rd Stage Comp Radio		NO DATA
4th Stage Comp Radio		NO DATA
5th Stage Comp Radio		NO DATA
1st Stage Cooler Approach	F	NO DATA
2nd Stage Cooler Approach	F	NO DATA
3rd Stage Cooler Approach	F	NO DATA
4th Stage Cooler Approach	F	NO DATA


C - 2B

Key Performano	e Indica	itors
Parameter	Units	Value
Specific Speed	RPM/KPPH	NO DATA
1st Stage Comp Radio		NO DATA
2nd Stage Comp Radio		NO DATA
3rd Stage Comp Radio		NO DATA
4th Stage Comp Radio		NO DATA
5th Stage Comp Radio		NO DATA
1st Stage Cooler Approach	F	NO DATA
2nd Stage Cooler Approach	F	NO DATA
3rd Stage Cooler Approach	F	NO DATA

NO DATA

Utilities Key Performance Indicators Detail

Units Value

Heat Recovery Steam Generator

Total Heat Input / Heat Output 691/691A ---

Parameters	Units	Value	
G	as Turbine 601		
GT-601 corrected fuel flow	KSCFH	NO DATA	
Temperature Rise efficiency	%	NO DATA	
Heat rate	Btu / kVVh	NO DATA	
Energy index	Btu / kWh	NO DATA	
Fuel cost	Rs./KWh	NO DATA	
G	as Turbine 602		
GT-602 corrected fuel flow	KSCFH	NO DATA	
Temperature Rise efficiency	%	NO DATA	
Heat rate	Btu / K/Vh	NO DATA	
Energy index	Btu / k///h	NO DATA	
Fuel cost	Rs./KWh	NO DATA	
G	as Turbine 603		
GT-603 corrected fuel flow	KSCFH	NO DATA	
Temperature Rise efficiency	%	NO DATA	
Heat rate	Btu / k/V/h	NO DATA	
Energy index	Btu / k///h	NO DATA	
Fuel cost	Rs./KWh	NO DATA	
Parameters			

Parameters	Units	Value
Stea	ım Generator 621	
Continuous Blowdown	KPPH	NO DATA
Continuous Blowdown	%	NO DATA
SG-821 thermal efficiency	%	NO DATA
SG-621 energy index	Btu / Ib	NO DATA
SG-621 fuel cost	Rs./lb	NO DATA
Stea	ım Generator 631	
Continuous Blowdown	KPPH	NO DATA
Continuous Blowdown	%	NO DATA
SG-631 thermal efficiency	%	NO DATA
SG-631 energy index	Btu / Ib	NO DATA
SG-631 fuel cost	Rs. / lb	NO DATA
Stear	m Generator 641	
Continuous Blowdown	KPPH	NO DATA
Continuous Blowdown	%	NO DATA
SG-641 thermal efficiency	%	NO DATA
SG-641 energy index	Btu / Ib	NO DATA
SG-641 fuel cost	Rs. / lb	NO DATA

iWaterTM

iWaterTM – A unique concept through which we offers process optimization solutions with guaranteed energy savings in the

- Chilled Water
- Cooling Water
- Boiler Feed Water
- Condenser Water
- Effluent and Raw Water Circuits.

These solutions include turnkey installation of additional or replacement of existing equipment with guaranteed payback in terms of energy savings to the customer. Client pays us only for the savings achieved certified through an energy test report mutually signed by both the parties.

iboilerTM

iboilerTM is a web-based boiler management system that is highly customizable, flexible and a robust product. It provides secure role based real-time access to relevant operational and corporate steam generation and distribution information that helps not only the technical staff but also the engineers and plant management to evaluate and improve their process efficiency. It also generates economic load allocation strategy for multi boiler operation for overall optimum system efficiency.

iFertilizerTM

iFertilizerTM is an plant wide real-time information and performance management solution specially developed for the fertilizer industry.

- It gathers raw data from
 - Urea
 - Ammonia
 - Utility and
 - ☐ Laboratory Information Systems
- Converts that raw data into performance, cost and loss parameters using dedicated material and equipment property packages.
- Provides real-time plant and individual equipment performance parameter in the following information distribution layers:
 - Business Management
 - Process Management
 - Operations Management

Urea 1 & Urea 2 Graph Parameters

Parameters	Units	Value
Graph Paramet	ters for UREA-1	
K Value H2O	Deg F	NO DATA
K Value CO2	KSCFH	NO DATA
K Value NH3	KSCFH	NO DATA
Graph Parameters for UREA-2		
Air Enthalpy	kCal/kg	NO DATA
Ammonium Carbamate Heat Decom	kCal/kg-carb	NO DATA

Urea 2 Key Performance Indicators Details 1

Parameters	Units	Value
CO2 Compres	sor C-2A	
Cooling Water Approach to Co2 Temp	Deg F	NO DATA
C-2C CO2 Corrected Flow	KSCFH	NO DATA
C-2D CO2 Corrected Flow	KSCFH	NO DATA
C-2E CO2 Corrected Flow	KSCFH	NO DATA
ACES		
T-1101 Tube Sheet top & Btm Temp diff	Deg F	NO DATA
CC-2 Shell side Temp difference	Deg F	NO DATA
NH3 Flow to R-1101		

Parameters	Units	Value	
Miscellaneous	Miscellaneous		
Steam A Header Corr. Flow Corrected Flow	KPPH	NO DATA	
Steam B Header Corr. Flow Corrected Flow	KPPH	NO DATA	
Urea conc		NO DATA	
Urea Sp. Gravity		NO DATA	
Total Steam Consumption	MTPH	NO DATA	
Steam Consumption E-245A	PPH	NO DATA	
Steam Consumption E-245B	PPH	NO DATA	

Carbamate Flow to ACES
T-1101 Steam Consumption
Stripper LMTD
Stipper Duty
Ctrinnar OLITLI

Urea 2 Key Performance Indicators Details 2

Parameters	Units	Value	
MP Loop			
E-264A Approach	Deg F	NO DATA	
E-264B Approach	Deg F	NO DATA	
E-264C Approach	Deg F	NO DATA	
E-264D Approach	Deg F	NO DATA	
E-264E Approach	Deg F	NO DATA	
E-264F Approach	Deg F	NO DATA	
E-265A Approach	Deg F	NO DATA	
Temp Diff	Deg F	NO DATA	
Evaporators			
UR2 Melt Flow	GPM	NO DATA	
UR2 Production Based on Melt Flow	MTPH	NO DATA	

Parameters	Units	Value
LIMS Calculations		
Avg MVV	%	NO DATA
Avg MVV	%	NO DATA
T-1101 Efficiency	%	NO DATA
8+10 retention	%	NO DATA
8+10 retention	%	NO DATA
8+10 retention	%	NO DATA
8+10 retention	%	NO DATA
8+10 retention	%	NO DATA
Reactor Efficency	%	NO DATA
Reactor H2O/CO2 ratio	%	NO DATA
Reactor NH3/CO2 ratio	%	NO DATA

Summary

- Convert real-time data into information for informed decisions
- Make use of the plant data to further develop value additions to the plants e.g iPower, iBoiler, iWater, iFertlizer etc