MANAGING ASSETS & CHALLENGES IN POWER GENERATION SECTOR

Keynote Address

Dato' Abdul Razak bin Abdul Majid Vice President (TNB Generation)

OSIsoft Asia Technology Conference 2007 The Westin Kuala Lumpur 24th October 2007

Powering The Nation's Progress

CONTENTS

- Energy for Society
- Energy Demand and Source of Supply
- Asset Value Chain
- Challenges in Generating Power
- Energy Efficiency
- Comparative Generation Cost
- Managing TNB's Business Portfolio
- TNB's Current Performance Highlights
- Summary/Conclusion

OUR SOCIETY REQUIRES ENERGY

WHAT DO THESE TRENDS TELL US?

World Marketed Energy Use by Fuel Type, 1980-2030

SOURCE OF ENERGY TO MEET DEMAND

Renewable

BIOMASS

renewable Heating, electricity, transportation

HYDROPOWER renewable Electricity

GEOTHERMAL renewable Heating, electricity

COAL nonrenewable Electricity, manufacturing

NATURAL GAS

WIND renewable Electricity

(MONING)

URANIUM nonrenewable Electricity

PETROLEUM

nonrenewable

nonrenewable

Transportation, manufacturing

Heating, manufacturing, electricity

Non-renewable

HOW BIG IS 1MW

100 W X 1 hr = 100 Wh 100 W x 10 hr = 1000 Wh = 1 kWh

Appliance	Rating	Operation *
Lighting	100W	416 days
Freezer	250W	167 days
Water Heater	350W	119 days
A/ Conditioning	750W	55 days
Electric Kettle	800W	52 days
Toaster	1000W	41 days
		* 24hrs Operation

800 W

1000 W

ASSET VALUE CHAIN - CONVERTING FUEL INTO ELECTRICITY

GENERATOR

- Oil
- Gas
- Distillate

Most Reliable

PUBLIC-AT-LARGE

ELECTRICITY BASICS: TURNING A ROTOR IN A MAGNETIC FIELD USING A GENERATOR

MOST COMMON METHOD OF GENERATING ELECTRICITY

Thermal

Hydro

HYDRO SCHEME

Example: TNB Hydro (SG. PERAK RIVER SYSTEM)

CHALLENGES FOR GENERATING POWER

- Rising Demand of Developing Countries
- Higher Usage of Energy per capita
- Reliability and Quality of Supply
- Technology limitation Cannot store
- Rising in Fuel Cost Location of fuel source
- Environmental Concern & Mitigation KYOTO Protocol
- Scarcity of Project Site
- Project Funding and Risk
- Country Policy Import of technology (e.g Nuclear) & fuels

Gross Efficiency

Type

ENERGY EFFICIENCY

- Measures the amount of energy in the raw fuel needed to produce a specified amount of electricity.
- Measured using a measure called the Heat Rate.

TECHNOLOGY LIMITATION

COMPARATIVE GENERATION COST PER kWh

Source: Paper 'The Economics of Generation Tecnologies' (Lockwood Greene consulting study) 2003

MANAGING GENERATION BUSINESS PORTFOLIO - Building Block of Decision Support System (DSS)

OUR PILOT INTEGRATED PROJECT (PHASE I) – Started in 2004

Main Modules

- Plant Historians and Analysis
- Business Analysis and Reporting
- Real Time Plant Modelling and Optimisation

PHASE 2 : EXTENSION TO ALL OTHER TNB'S PLANTS- Full Completion by End 2008

PROVIDING REAL TIME DATA PLATFORM TO TRACK AND MONITORING OUR KEY PERFORMANCE INDEX (KPIs)

AVAILABILITY AND UNPLANNED OUTAGE TRENDING

- **TNB** Plant Availability achieved 91.15%, with 8 stations exceeding 90%
- ***** TNB plant UOR achieved 2.15%, with majority of plants below 4%

AGGREGATE EFFICIENCY (%) TRENDING

***** TNB Plant Thermal Efficiency increased by >4% in 5-Years

SUMMARY & CONCLUSION

TNB's Drive Towards Efficient Asset Management & Profitability.

- Thru Several Initiatives Includes T7, KPI and Continuous Monitoring

OPERATIONAL EXCELLENCE – Efficient and Flexible

- Operating at most efficient manner [Benchmarking with designed data]
- High availability and reliability [Early detection of wear and tear]
- Moving towards real-time enterprise [Remote operation monitoring]
- Ability to track maintenance requirement.
- Improve Technical know-how.

COMMERCIAL EXCELLENCE – Investment and Cost

- Separate plant accounting and reporting
- Economics and overall competitiveness
- Improve Business know-how.

REGULATORY COMPLIANCE – Reliability & Environmental

- KTAK Reliability of supply and Energy mix
- EC Technical & Financial Performance Reporting
- DOE Continuous On-Line Emission monitoring
- OOSH Safe operation and Early warning

THANK YOU

www.tnb.com.my

Powering The Nation's Progress